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Protein Protein Interaction Identification using 
Weighted Graphs by Random Walk 

M.Thillainayaki, M.Hemalatha 
 

Abstract— Proteins in the same protein complexes should highly interact with each other but rarely interact with the other pro-
teins in protein-protein interaction (PPI) networks. All interaction network weighting schemes have been proposed so far in the 
literature in order to eliminate the noise inherent in interactome data. Visualization representation of data visually and is an 
important task in scientific research. PPI are discovered using mass spectrometry, or in silico predictions tools, resulting in large 
collections of interactions stored in specialized databases. Using Random walk on weighted graphs for identifying the interac-
tion easily between Protein subsets and measuring the evaluation performance of proteins, Graphs for  PINs visualizing the 
high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate 
proteins and interactions with biological information that enriches the PINs with semantic information, and maintained as a 
separate databases for easy retrieval information of proteins from various Protein databases. 
 

Index Terms— Graph, Networks, Protein Protein interaction, Random Walk, Weighted Networks 

——————————      —————————— 

1 INTRODUCTION                                                                     

rotein interactions can also be classified into two types 
based on their timing and the spatial distribution of bind-

ing sites on the protein surface. Much effort has been devoted 
to propose computational approaches for detecting PPIs based 
on various data types, such as genomic information, protein 
domain and protein structure information. For example, Yu et 
al. proposed a method based on secondary structures for in-
ferring PPIs, and found that helix and disordered structures 
account for most of interacting regions. Products of coex-
pressed genes may form stable complexes and interact with 
each other simultaneously, which is only possible when a 
network hub ("party hub”) possesses a unique binding site for 
each interaction partner. Alternatively, hub proteins that are 
not co-expressed with their interaction partners are believed to 
bind their partners individually at different times (or in differ-
ent cellular locations) via the same interface ("data hubs”). 
Following Kim et al.[4] we refer to the interactions of the first 
and the second type as simultaneously possible (SP) and mu-
tually exclusive (ME), respectively. SP and ME interactions 
and the corresponding binding interfaces can be directly stu-
died by overlaying highquality protein interaction data with 
known threedimensional structures of protein complexes. 
Analyses of such a structurally resolved interaction network 
(SIN) together with gene expression patterns revealed dis-
tinctly different cellular roles of party and date hubs, with the 
former corresponding to stable network modules and the lat-
ter connecting modules with each other. Date hubs show 
much lower average degree and are more often encoded by 

essential genes than party hubs. It is of great significance to 
develop computational methods by only using protein se-
quence information for predicting protein-protein interactions. 
Current computational systems for predicting PPIs usually 
consist of two parts, feature extraction and machine learning 
model.  
However, it is often hard to distinguish between these two 
structures by relying only on PPIN, as in general the analyzed 
protein interactions do not have temporal and spatial informa-
tion. Nevertheless, since PPIN represent undirected binary or 
weighted graphs, several graph-based inference approaches 
have been successfully employed to detect modularity. The 
majority of such approaches evaluate interactome topological 
features, and typical examples are node degree and clustering 
coefficient, both based on the levels of connectivity of each 
node. Both global and local connectivity can be explored by 
these methods, depending on the kind interactome analysis to 
be performed. The results may vary, as methods are based on 
different principles. For instance, the two main contributions 
to our work come from the application of two algorithms, 
CFinder and MCODE. Interestingly, they deal with network 
modularity through similar topological instruments, but 
achieve quite different outcomes; therefore, we based our 
analysis on them, while also evaluating other methods. In pa-
rallel, a substantial heterogeneity of human interactome data-
sets has been generated depending on the underlying methods 
of identifying and characterizing protein interactions. Besides 
high-throughput approaches, in particular the curation of lite-
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rature and the provision of computational predictions have 
allowed for the mapping of the human interactome. 
 
2.1 Protein interaction 
Main requirements for the visualization of protein interaction 
networks are: Clear rendering of network structure and sub-
structures, such as dense regions or linear chains; Fast render-
ing of huge networks; Easy network querying through focus 
and zoom; Compatibility with the heterogeneous data formats 
used for PIN representation; Interoperability with PPI data-
bases, allowing the automatic querying of single or multiple 
databases using existing middlewares (e.g. cPath [6]);  Integra-
tion of heterogeneous data sources, e.g. functional information 
about proteins extracted from biological ontologies. Most stu-
dies have assumed that proteins in a protein complex form a 
highly connected subnetwork in the PPI network. However, 
although proteins in the same complex are more highly con-
nected with each other than with proteins from different com-
plexes, many protein complexes are not very dense. A statis-
tical analysis was used to verify this point. The density of a 
protein complex can be defined as  

Density = 
)1|(|||

||2
−VV

E
                                 1 

where |V|j is the number of proteins in the protein complex 
and |E| is the number of protein-protein interactions in the 
protein complex. The maximum density is 1 and the minimum 
density is 0. The analysis used an unweighted protein interac-
tion network of yeast downloaded from the DIP database, 
which contained 5093 proteins and24 743 interactions [1]. The 
408 known yeast protein complexes from the MIPS database 
were used as benchmark complexes with 172 protein com-
plexes with 2 proteins and 236 protein complexes with more 
than 2 proteins. The statistical analysis considered the com-
plexes with more than 2 proteins. The results are shown in Fig. 
1.

 
Figure 1. Number of complexes with different densities 

 
To mine protein complexes from protein-protein interaction 
networks, first proteins in one complex should be in a same 
subcellular location. Thus, proteins are clustered if they are in 
a same subcellular location. If some proteins do not have a 
subcellular location annotation, these proteins may appear in 
any subcellular location. The subcellular locations of the yeast 
protein data was downloaded from the Biocomp database. 
Second, a topology property was defined to decide whether 
two proteins were in the same complex. This property was 
defined as 
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where np represents the percentage of same neighbors of two 
proteins, n(u) is the neighbor set of protein u, and n(v) is the 
neighbor set of protein v. The rule gives manypairs of proteins 
where each pair of proteins is regarded as a cluster. Then these 
proteins are used to construct a graph with the following two 
steps to refine clusters.  

 
Table 1 : Dimensions of PIN in some organisms. 

Step 1 If a connected component has more than three proteins 
and if one protein’s degree is 2 and it can form a triangle with 
other proteins, the two clusters represented by outside edges 
(dotted line) are deleted with the proteins on the triangle add 
as one seed.  
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Figure. 2 Connected components. 
Step 2 If a connected component forms a clique as in Fig. 2, 
then all the seeds represented by the edges are deleted and all 
the proteins in the clique are combined into one seed. 

2.2 Random Walk Steps 
A novel random walk method for protein subcellular localiza-
tion based on amino acid composition. By mapping the pro-
tein data into a weighted and partially labeled graph where 
each node represents a protein sequence, a random walk clas-
sification model to predict labels of unlabeled nodes based on 
a theoretical model. Random walk classifier was coded in 
MATLAB. Given the training data and their classes, compute 
the state matrix Y and weight matrix W. The similarity or 
weight between two nodes was given according to the radius 
basis function. First the complete graph offers each labela 
chance to reach the unlabeled node in at atleast one step. 
Second, the good accuracy gradually declines after the peak 
value of t. Since the labeld training data is often deterministic, 
the transistion matrix built over the labeled data is commonly 
treated as a unit matrix in semisupervised random walk me-
thods.  
We next aimed to deduce a simple classifier based on the 
nodes that are labeled so it can be applied to predict the labels 
of the unlabeled nodes. Our solution was a state vector y that 
provides the label for an unlabeled data point x. We first pro-
vide an example to clarify the process of label propagation 
through random walks. Consider an initial graph G con-
structed over the training data (X, Y) = {(x1, c1), (x2, c1), (x3, 
c2)}. Each data point lacking a label is added into graph G as 
an unlabeled node. Figure 3 displays such a graph G’ after 

three unlabeled data points were added. The graph G’ is often 
assumed to be label-connected to become completely labeled 
that is, it is possible to reach a labeled node from any unla-
beled node in a finite number of steps. For example, if in a 
random walk, the sixth node v6 ends at the second node v2, 
then this node will be labeled as c1. Node classification relies 
on a random walk originating at the unlabeled node vj and 
ends at one labeled node vi after several steps, and in this 
way, vj obtains its label from vi. If during the walk an unla-
beled node reaches a labeled node for the first time, it will not 
remain at that node because the labeled nodes are not absorb-
ing states; rather, the unlabeled node will move to another 
node with a certain probability. Since graphs G and G’ are 
undirected and symmetric, a random walk that starts at vj and 
ends at vi can be also revertible. Next, we assume p(vi, v) to be 
the state-transition probability with which a walk proceeds 
from node vi in V to the new node v represented by unlabeled 
data point x. The state y of new node v is represented as  
 

 
                                                                                                            3 

 
where  
 

                          
 
 
 
  
 

                                          
          4 

 
 
The idea underlying the random walk methods is that the 
probability of labeling a node v with a label (or state) y is the 
total probability that a random walk starting at v will end at a 
node labeled y. F(x) therefore is more likely to return a proba-
bility distribution such as F(xi) = F(vi) = [f1i, f2i, ..., fci]T, where 
each distribution fji refers to the total probability that the a 
random walk starting at node vistops at any node labeled cj 
after t steps. The largest fji allows vi to be assigned label cj. 
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Figure 3. Partially labeled graph 

2.3 Evaluation Measures 
To evaluate the performance of the proposed method, the fol-
lowing criterion was used: the overall prediction accuracy, 
sensitivity, precision, and correlation coefficient was calcu-
lated. 
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where true positive (TP) denotes the number of true samples 
which are predicted correctly; false negative (FN) is the num-
ber of samples predicted to be noninteracting pairs incorrectly; 
false positive (FP) is the number of true non-interacting pairs 
predicted to be PPIs falsely, and true negative (TN) is the 
number of true non-interacting pairs predicted correctly. Fur-
thermore, the ROC curve was also calculated to evaluate the 
performance of proposed method. Summarizing ROC curve in 
a numerical way, the area under an ROC curve (AUC) was 
computed. Global encoding (GE) of protein sequences could 
be obtained by the following steps. 

Step 1. Transformation of protein sequence Researches [2,3] 
have pointed out that amino acids can be classified into 6 dif-
frent classes according to the physicochemical characteristic 
such as residues’ hydrophobic property, charged property and 
so on. For the reduction of data complexity, we first encode 
the protein sequence substituting every amino acid by its class 
accordingly, and the substitution rules are presented in Table 
2. 

Amino acid classification 
Aliphatic amino acid C1 = {A,V,L,I,M,C} 
Aromatic amino acid C2 = {FW,Y} 
Polar amino acid C3 = {S,TN,Q} 
Positive amino acid C4 = {K,R} 
Negative amino acid: C5 = {D,E} 
Special conformations C6 = {G,P} 

Table 2: Amino acid classification 
In this way, every protein sequence is represented by six sym-
bols: C1, C2…C6. Based on this classification, we can further 
divide these 6 classes into 2 subsets each of which contains 3 
different classes. By doing this, ten modes can be obtained as 
follows: {C1, C2, C3} vs {C4, C5, C6}, {C1, C2, C4} vs {C3, C5, 
C6}, {C1, C2, C5} vs {C3, C4, C6}, {C1, C2, C6} vs {C3, C4, C5}, 
{C1, C3, C4} vs {C2, C5, C6}, {C1, C3, C5} vs {C2, C4,C6}, {C1, 
C3, C6} vs {C2, C4, C5}, {C1, C4, C5} vs {C2, C3, C6}, {C1, C4, 
C6} vs {C2, C3, C5} and {C1, C5, C6} vs {C2, C3, C4}. We then 
transform every protein sequence into ten binary sequences 
based on these ten modes correspondingly.  
Step 2. Partition of characteristic sequences In this step, every 
characteristic sequences are further divided into subsequences 
of different lengths by a special strategy. For any characteristic 
sequence Sn = s1, s2,…,sn of length n, given a positive integer, 
Sn will be divided into L subsequences. We call the kth subse-
quence as SubSk (k = 1, 2,…, L) and SubSk is composed of the 
first ⌊kn/L⌋ numbers of Sn. Here we present an example to 
explain the process of characteristic sequence partition in Ta-
ble 3. 
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Table 3: Characterisitic sequence partition 

 In this sample, the length of the given sequence is 57 and pa-
rameter L is set to be 6. So the length of its subsequences is 9, 
19, 28, 39, 47 and 57 respectively. 
Step 3. Extraction of feature vectors In the last step, feature 
vectors of composition and transition descriptors will be ex-
tracted from the subsequences produced in the prior step. The 
composition descriptor describes the frequencies of ‘0’ and ‘1’ 
in each subsequence. As a composition descriptor of one sub-
sequence contains two frequency values, any characteristic 
sequence would be represented by a 2*L dimensional feature 
vector by the composition descriptor. Transition, as the second 
descriptor, account for the switch frequency between ‘0’ and 
‘1’ in every subsequence. The times where ‘0’ follows 1’ and ‘1’ 
follows ‘0’ happen are counted independently.  
It shows the process of descriptors’ extraction from the subse-
quence 3 in the Table 2. The length of example sequence is 28; 
the numbers of ‘0’ and ‘1’are 12 and 16 respectively; the transi-
tion times of ‘1-0’ and ‘0-1’ are both 9. Therefore, two values of 
composition descriptor are 12/28 = 42.86 % and 16/28 = 57.14 % 
respectively. The value of transition descriptor is 9 + 9 = 18. In 
this work, L is set to be 5 after adjusting for the best perfor-
mance. As a protein sequence would be first transformed into 
10 numerical sequences and each sequence would further be 
partitioned by 5 subsequences which can be represented by 3-
dimension feature descriptors, the length of the whole feature 
vector of a protein sequence is 10*5*3 = 150. 
It is often hard to distinguish between these two structures by 
relying only on PPIN, as in general the analyzed protein inte-
ractions do not have temporal and spatial information. Never-
theless, since PPIN represent undirected binary or weighted 
graphs, several graph-based inference approaches have been 
successfully employed to detect modularity. The majority of 
such approaches evaluate interactome topological features, 

and typical examples are node degree and clustering coeffi-
cient, both based on the levels of connectivity of each node. 
 
Algorithm: 

1. Input: Samples matrix and any test sample as query 
and target network, pairwise node and similarity 
score. 

2. Normalize the columns of x to have a unit as a data 
preprocessing such as removal of non homologous 
nodes and inserting primary edges. 

3. Calculate the set of nearest nodes, distance and name 
the solved node as in the subset. 

4. Solve the table. 
5. Compute each residual. 
6. Output: Identity will be occurred for matching best in 

the target network for the given query. 

 
Figure 4. ROC on Random Walk in different protein se-

quence. 
 To solve the PPI inference problem, a novel and fast optimiza-
tion methodmusing linear programming to integrate multiple 
heterogeneous data from a protein databases. We note that the 
induced sparsity implies a poor identification power with re-
gard to the resolution spectrum, especially for small and in-
termediate module sizes. Due to the retrieval of coarse resolu-
tion modules, whose large sizes depend on incremental merg-
ing of small modules, a weakness of the MaxMod approach 
concerns its possible interpretation in biological applications. 
In addition, more reasons of concern exist with reference to 
methodological aspects. First, more than one partition could 
reach the maximal modularity (local maxima). Second, the 
modularity definition could reveal only some groups (due to 
bias). Third, as modularity calculation is sensitive to noise, an 
optimal partition may not be achieved. Consequently, the 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017                                                                                        977 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

MaxMod suboptimality effect of limiting the coverage for the 
network resolution spectrum requires investigation when all 
module sizes may in principle count. 

3 CONCLUSION 
A method named SiS (Significant Subnetworks) that finds the 
most probable subgraphs in a large biological network data 
set. SiS initializes a weighted graph named the template graph 
that summarizes the input graphs. SiS takes advantage of the 
template graph while finding the most probable subgraphs of 
a user-given size, k. In other words, SiS finds the subgraphs of 
k interactions with the largest probability to appear in a net-
work selected randomly from the input data set. Multiple he-
terogeneous features for the proteins in the network are then 
combined into the form of weighted kernel fusion, which pro-
vides a new "adjacency matrix" for the whole network that 
may consist of disconnected components but is required to 
comply with the transition matrix on the training subnetwork. 
This requirement is met by adjusting the weights to minimize 
the element-wise difference between the transition matrix and 
the weighted kernels. The minimization problem is solved by 
linear programming. The weighted kernel fusion is then trans-
formed to regularized Laplacian (RL) kernel to infer missing 
or new edges in the PPI network, which can potentially con-
nect the previously disconnected components. An accurate 3D 
structure-independent computational method for classifying 
Protein interactions into simultaneously possible (SP) and mu-
tually exclusive (ME) as well as into obligate and non-obligate. 
Our classifier exploits features of the binding partners pre-
dicted from amino acid sequence, their functional similarity, 
and network topology. The method represents protein surface 
patches using labeled graphs and uses a graph kernel method 
to calculate the similarities between graphs. A new surface 
patch is predicted to be interface or non-interface patch based 
on its similarities to known DNA-binding patches and non-
DNA-binding patches. The proposed method achieved high 
accuracy when tested on a representative set of 146 protein-
DNA complexes using leave-one-out cross-validation. Then, 
the method was applied to identify DNA-binding sties on 13 
unbound structures of DNA-binding proteins. In each of the 
unbound structure, the top 1 patch predicted by the proposed 
method precisely indicated the location of the DNAbinding 
site. Comparisons with other methods showed that the pro-
posed method was competitive in predicting DNA-binding 
sites on unbound proteins. By modeling the optimization of 
the composite network and the prediction problems within a 

unified objective function. In particular, we use a kernel target 
alignment technique and the loss function of a network based 
classifier to jointly adjust the weights assigned to the individ-
ual networks. We show that the proposed method, called 
MNet, can achieve a performance that is superior (with respect 
to different evaluation criteria) to related techniques using the 
multiple networks of four example species (yeast, human, 
mouse, and fly) annotated with thousands (or hundreds) of 
GO terms,  novel multiple network alignment algorithm based 
on a context-sensitive random walk model. The random walk-
er employed in the proposed algorithm switches between two 
different modes, namely, an individual walk on a single net-
work and a simultaneous walk on two networks. The switch-
ing decision is made in a context-sensitive manner by examin-
ing the current neighborhood, which is effective for quantita-
tively estimating the degree of correspondence between nodes 
that belong to different networks, in a manner that sensibly 
integrates node similarity and topological similarity. The re-
sulting node correspondence scores are then used to predict 
the maximum expected accuracy (MEA) alignment of the giv-
en networks. A novel statistical method to extract interacting 
residues and interacting patches can be clustered as predicted 
interface residues. In addition, structural neighboring proper-
ty can be adopted to construct a new energy function, for eva-
luating docking solutions. It includes new statistical property 
as well as existing energy items. However, the novel measure 
based on profile-profile comparisons substantially improved 
the performance of the four methods, especially when very 
low sequence identity datasets were evaluated. We also per-
formed a parameter optimization step to determine the best 
configuration for each clustering method. Random Walks to 
predict missing (or new) functions of partially annotated pro-
teins. Particularly, we apply downward random walks with 
restart on the GO directed acyclic graph, along with the avail-
able functions of a protein, to estimate the probability of miss-
ing functions. To further boost the prediction accuracy. Com-
paring with nonessential proteins, essential proteins appear 
more frequently in certain subcellular locations and their evo-
lution more conservative. By integrating the information of 
subcellular localization, orthologous proteins and PPI net-
works, we propose a novel essential protein prediction me-
thod. 
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